627 research outputs found

    Effect of water availability on changes in root amino acids and associated rhizospere on root exudation of amino acids in Pisum sativum L

    Get PDF
    Root exudation is considered to regulate the abundance of the microbial community. It may vary both qualitatively and quantitatively in response to the environment in which the plant is growing. A part of exuded N derives from amino acids (AAs). This, in turn, may help plants to cope with abiotic stresses by favouring positive interactions with the rhizosphere environment, thus playing a potential role in maintaining healthy plants. In this respect, an under-investigated area is the effect of stress due to water deficit (WD). It is proposed that the AA profile in the rhizosphere may be altered by WD, reflecting a modulation of root AA exudation linked to a physiological response of the plant to water stress. To investigate this, Pisum sativum L. plants, grown in unsterilised Rhizobium leguminosarum-enriched soil, were stem-labelled with 15N-urea for 96 h, and then subjected/not subjected to 72 h of WD. The concentrations and abundance of 15N-labelling in individual AAs were determined in both roots and the associated rhizosphere at 24, 48 and 72 h after stress application. It was found that both AAs metabolism in the pea root and AAs exudation were strongly modified in WD conditions. After 24 h of WD, the concentrations of all measured AAs increased in the roots, accompanied by a dramatic stress-related increase in the 15N-labelling of some AAs. Furthermore, after 48–72 h of WD, the concentrations of Pro, Ala and Glu increased significantly within the rhizosphere, notably with a concomitant increase in 15N-enrichment in Pro, Ser, Asn, Asp, Thr and Ile. These results support the concept that, in response to WD, substantial amounts of recently assimilated N are rapidly translocated from the shoots to the roots, a portion of which is exuded as AAs. This leads to the rhizosphere being relatively augmented by specific AAs (notably HSer, Pro and Ala) in WD conditions, with a potential impact on soil water retention

    Impact of waterloging-induced hypoxia on nitrogen metabolism in the legume Medicago truncatula

    Get PDF
    Flooding and waterlogging due to the induced oxygen limitation in the root zone is harmful for plant development. This study examines short term modulation of nitrogen metabolism in Medicafo truncatula submitted to waterlogging. The objective was to evaluate whether and how nitrogen metabolism contributes to the mitigation of damaging effects of hypoxia. The processes that were affected early after the onset of stress were nitrate reduction and amino acids synthesis. NADH-dependent nitrate reductase activity increased dramatically in the root. It is suggested that nitrate reductase contributes to cellular acclimation to hypoxia by regenerating NAD + from NADH. The regeneration of NAD+ is a crucial issue in hypoxic cells because it is necessary for supporting increasing rates of glycolysis. Amino acids metabolism shifted from the ATP consuming pathway leading to asparagines, the most accumulated amino acid in Medicago truncatula, to pathways leading to alanine and GABA accumulation. Synthesis of alanine is not dependent on ATP and allows for storage of carbon used in glycolysis (pyruvate) in a form readily utilizable at the return to normoxic condition. GABA synthesis through the GABA shunt starts by decarboxylation of glutamate by glutamate decarboxylase (GDC) a proton consuming enzyme that helps maintaining cytosolic pH homeostasi

    Strong coupling theory for driven tunneling and vibrational relaxation

    Full text link
    We investigate on a unified basis tunneling and vibrational relaxation in driven dissipative multistable systems described by their N lowest lying unperturbed levels. By use of the discrete variable representation we derive a set of coupled non-Markovian master equations. We present analytical treatments that describe the dynamics in the regime of strong system-bath coupling. Our findings are corroborated by ``ab-initio'' real-time path integral calculations.Comment: 4 LaTeX pages including 3 figure

    Differential performance of two forage species, Medicago truncatula and Sulla carnosa, under water-deficit stress and recovery

    Get PDF
    The response patterns during water deficit stress and subsequent recovery of two forage species, Medicago truncatula and Sulla carnosa, were studied. After germination and pre-treatment, seedlings were individually cultivated for two months under two irrigation modes: 100% and 33% of field capacity. Measured parameters were plant growth, water relations, leaf osmotic potential, lipid peroxidation, and leaf inorganic (Na+ and K+) and organic (proline and soluble sugars) solute contents, as well as delta-1-pyrroline-5-carboxylate synthase (P5CS) and proline dehydrogenase (PDH) activities. Our results showed that under control conditions, and in contrast to roots, no significant differences were observed in shoot biomass production between the two species. However, when subjected to water-deficit stress, M. truncatula appeared to be more tolerant than S. carnosa (reduction by 50 and 70%, respectively). In the two studied species, water-deficit stress led to an increase in root/shoot ratio and leaf proline and soluble sugar contents, and a decrease in leaf osmotic potential. Enzymatic assay revealed that in the two species, P5CS activity was stimulated whereas that of PDH was inhibited under stress conditions. Despite greater accumulation of proline, sugar, and potassium in leaves of S. carnosa, M. truncatula was more tolerant to water deficit. This was essentially due to its capacity to control tissue hydration and water-use efficiency, in addition to its greater ability to protect membrane integrity. Following stress relief, M. truncatula and S. carnosa showed partial re-establishment of growth capacity

    Uso de marcação não radiativa para identificação de grandes rearranjos gênicos na deficiência da 21-hidroxilase

    Get PDF
    PURPOSE: To establish the Southern blotting technique using hybridization with a nonradioactive probe to detect large rearrangements of CYP21A2 in a Brazilian cohort with congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CAH-21OH). METHOD: We studied 42 patients, 2 of them related, comprising 80 non-related alleles. DNA samples were obtained from peripheral blood, digested by restriction enzyme Taq I, submitted to Southern blotting and hybridized with biotin-labeled probes. RESULTS: This method was shown to be reliable with results similar to the radioactive-labeling method. We found CYP21A2 deletion (2.5%), large gene conversion (8.8%), CYP21AP deletion (3.8%), and CYP21A1P duplication (6.3%). These frequencies were similar to those found in our previous study in which a large number of cases were studied. Good hybridization patterns were achieved with a smaller amount of DNA (5 mug), and fragment signs were observed after 5 minutes to 1 hour of exposure. CONCLUSIONS: We established a non-radioactive (biotin) Southern blot/hybridization methodology for CYP21A2 large rearrangements with good results. Despite being more arduous, this technique is faster, requires a smaller amount of DNA, and most importantly, avoids problems with the use of radioactivity.OBJETIVO: Padronizar a técnica de Southern blotting usando hibridização com material não radioativo para detectar grandes rearranjos no gene CYP21A2 em uma amostra da população brasileira com hiperplasia adrenal congênita. MÉTODO: Foram estudados 42 pacientes, 2 dos quais aparentados, totalizando 80 alelos não relacionados. As amostras de DNA foram obtidas de sangue periférico, digeridas com enzima de restrição Taq I, realizado Southern blotting e hibridizadas com sonda marcada com biotina. RESULTADOS: O método se mostrou eficaz, com resultados similares aos encontrados ao utilizar a metodologia com material radioativo. Foram encontradas 2,5% de deleção do CYP21A2, 8,8% de grandes conversões, 3,8% de deleção do CYP21A1P e 6,3% de duplicação do CYP21A1P. Estas freqüências foram similares às encontradas em nosso estudo prévio, onde um número significante de casos foi estudado. Um bom padrão de hibridização foi alcançado utilizando menor quantidade de DNA (5mg) e a emissão de sinais foi observada entre 5 minutos e 1 hora de exposição. CONCLUSÕES: Padronizamos uma técnica de Southern blotting/ hibridização com material não radioativo (biotina) para a pesquisa de grandes rearranjos no gene CYP21A2 com bons resultados. Apesar de ser mais trabalhoso, este método é mais rápido, utiliza menores quantidades de DNA e, principalmente, evita problemas com o uso de radioatividade

    Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition

    Get PDF
    Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3−) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3−, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3− into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids

    Arabidopsis seedlings display a remarkable resilience under severe mineral starvation using their metabolic plasticity to remain self-sufficient for weeks

    Get PDF
    During the life cycle of plants, seedlings are considered vulnerable because they are at the interface between the highly stress tolerant seed embryos and the established plant, and must develop rapidly, often in a challenging environment, with limited access to nutrients and light. Using a simple experimental system, whereby the seedling stage of Arabidopsis is considerably prolonged by nutrient starvation, we analysed the physiology and metabolism of seedlings maintained in such conditions up to 4 weeks. Although development was arrested at the cotyledon stage, there was no sign of senescence and seedlings remained viable for weeks, yielding normal plants after transplantation. Photosynthetic activity compensated for respiratory carbon losses, and energy dissipation by photorespiration and alternative oxidase appeared important. Photosynthates were essentially stored as organic acids, while the pool of free amino acids remained stable. Seedlings lost the capacity to store lipids in cytosolic lipid droplets, but developed large plastoglobuli. Arabidopsis seedlings arrested in their development because of mineral starvation displayed therefore a remarkable resilience, using their metabolic and physiological plasticity to maintain a steady state for weeks, allowing resumption of development when favourable conditions ensue
    • …
    corecore